

__ Deliverable 4.5

1

Retrofitting Equipment for Efficient Use of Variable Feedstock in Metal Making
Processes - REVaMP

H2020-NMBP-ST-IND-2018-2020 / H2020-NMBP-SPIRE-2019

Grant agreement no. 869882

Start Date: July 1st, 2020

Duration: 48 months

Project Type: Innovation Action

D 4.5. Software as a Service tool for Furnace Performance
Management

Due Date: June 30th, 2022

Submission Date: August 1st, 2022

Work Package: WP 4 – Process Monitoring, Control and Decision Support Systems

Lead Beneficiary: AZTERLAN

Authors:

Partner Name
BFI

NCBJ

SYSKON

POLON

Fraunhofer ILT

LSA

AMB

SIDENOR

SIDENOR I+D

EURECAT

GRUPAL ART

AZTERLAN Javier Nieves, Ciro Sierra, Asier González

GHI HORNOS

REFIAL

INATEC

RWTH AACHEN

CARTIF
EXIDE

Dissemination level

PU public

CO Confidential, only for members of the consortium (incl. the Commission Services)

__ Deliverable 4.5

2

Table of contents

1. About REVaMP ... 3

2. Introduction and Summary .. 3

3. SaaS as Solution for REVaMP .. 4

3.1. What .. 4

3.2. How ... 5

3.2.1. .Net and Azure ... 5

3.2.2. .Net in REVaMP, .Net Core – Web API ... 6

3.2.3. Swagger as Documentation ... 7

3.3. Where .. 8

3.4. Why ... 10

3.5. Design ... 11

3.5.1. Technologies Description ... 11

3.5.2. Diagrams .. 26

3.5.2.1. Components Diagram .. 26

3.5.2.2. Package Diagrams ... 26

3.5.2.3. Class Diagram by Component ... 29

3.6. Storage .. 33

3.6.1. Data Base .. 33

3.6.2. File System .. 34

3.7. Server Entities Management ... 35

3.7.1. General .. 35

3.7.2. Third Party Integration ... 40

3.7.2.1. External DLLs ... 41

3.7.2.2. External Services in Python ... 42

3.7.2.3. Docker Integration .. 44

4. REVaMP DEMO ………………………………………………………………………………..44

__ Deliverable 4.5

3

1. About REVaMP

The main objective of the project “Retrofitting Equipment for Efficient Use of Variable
Feedstock in Metal Making Processes” (REVaMP) is to develop, adapt and apply novel
retrofitting technologies to cope with the increasing variability and to ensure an efficient use of
the feedstock in terms of materials and energy.

For this purpose, existing metal production plants shall be retrofitted with appropriate sensors
for scrap analysis and furnace operation. Furthermore, the selection of the optimal feedstock
in terms of material and energy efficiency shall be improved by application of appropriate
process control and decision support tools. Also, a solid scrap preheating system operated
with waste derived fuel shall increase the energy efficiency of the melting processes. To
monitor and control the process behavior in an optimal way, model-based software tools will
be developed and applied.

The retrofitting solutions will be exemplarily demonstrated within three different use cases from
the metal making industry, namely electric and oxygen steelmaking, aluminium refining and
lead recycling. The performance of the different technologies will be assessed, and the benefits
will be evaluated in terms of economic and ecological effects, as well as cross-sectorial
applicability in other process industries.

2. Introduction and Summary

This deliverable D4.5, “Software as a Service tool for Furnace Performance Management”, is
included in the work package WP 4 “Process Monitoring, Control and Decision Support
Systems” of the project. Specifically, this deliverable groups all work developed during WP4
and provides an access method that facilitates the use of the developed models and
algorithms.

Deliverable D4.5. is of the type OTHER, consisting of a software solution to be deployed and
adjusted during WP6, which is focused on making a demonstration on retrofitting solutions at
aluminium use cases. Moreover, as these solutions will be deployed and tested during this
WP, several adjustments could be carried out with the final aim to provide a better solution.
Nevertheless, this deliverable is created as a small report to summarize the achieved results
by developer teams in both use cases. Finally, as this software will introduce also third party
models, it will be also tested in WP5 and WP7 which completes the aforementioned three
diferente use cases.

__ Deliverable 4.5

4

3. SaaS as Solution for REVaMP

3.1. What

The idea of centralizing the business applications has been discussed since at least the 1960s.
In the 1990s, the idea evolved with the rise of the Internet in application service providers
(ASPs), that is, with the emergence of third-party applications managed and hosted by an ASP
provider, but some software still required installation on users' computers.

SaaS is an evolution of the ASP model: in this solution, providers and distributors manage their
own software and no installation is required, since the software is distributed instantly over the
Internet, that is, through the cloud. Cloud computing allows businesses to consume computing
resources over the Internet as a service (in the same way as electricity or water).

The SaaS-based cloud computing model now offers businesses significant efficiency and cost
savings, but a number of events had to occur before SaaS could become a feasible option:

 Increased access to high-speed Internet connections.
 Standardization of digital technologies.
 Increased popularity and use of web-type interfaces
 Rapid and widespread adoption of mobile devices.

Companies list many reasons using cloud-based SaaS solutions, including increased
efficiency and cost-effectiveness, along with scalability, remote access to services, and
automation of upgrades. More accurately:

 Low infrastructure and configuration costs. There are no expenses to amortize in the
balance sheet. Compared to traditional software packages, the SaaS model can be
extremely cost-effective. Users always have the latest version of the software, usually
without the need to pay for updates or maintenance.

 Access from anywhere. Services can be accessed from any other connected device,
making it easy to work from home, reduce lost productivity from remote employees,
and save office space.

 Fast implementation. Setup is quick and easy, compared to an in-house IT
infrastructure.

 Expandability. Access is usually per license and monthly, so a company only takes
what it needs. Adding more licenses and extending applications as requirements grow
means convenience and scalability.

 Automatic and frequent updates. The provider takes care of all the updates, which can
be weekly or monthly. There is no need to maintain or make backwards compatible
with previous versions of the software.

 Security. The provider manages the security.wqeqwe

__ Deliverable 4.5

5

3.2. How

3.2.1. .Net and Azure

For the solution that has been carried out in the REVaMP project, the developments were
made in .Net. Specifically, .NET is a Microsoft framework that emphasizes network
transparency, regardless of hardware platform, and enables rapid application development.
Until 2015, .NET only supported Windows, and its code was licensed under a proprietary
license. This led to the creation of free implementations, such as Mono. However, Mono
continued to have limitations compared to the original one, especially in relation to WinForms
(a tool for Windows graphical interfaces), in addition to certain patent problems. For this
reason, Microsoft decided to release part of the .NET framework under the name of .NET Core.
Later, support for ASP .NET, ML .NET, and WinForms was added. .NET Core is expected to
replace the .NET Framework in the future.

In this way, and trying to bring the results of the development closer to the world of the new
cloud computing, the creations on this platform are easily extendable or deployable in Microsoft
Azure. Microsoft Azure (formerly Windows Azure and Azure Services Platform) is a cloud
computing service created by Microsoft to build, test, deploy, and manage applications and
services using its data centers. It provides Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) and supports many different programming
languages, tools and frameworks, including specific Microsoft and third-party software and
systems. Azure was announced in October 2008, beginning with the codename "Project Red
Dog"1 and released on February 1, 2010 as "Windows Azure" before being rebranded as
"Microsoft Azure" on March 25, 2014.

The features of Microsoft Azure are as listed below:

 Compute: The Microsoft Azure runs Windows Server-based applications. These
applications can be built using the .NET Framework in languages like C# and Visual Basic,
or implemented without .NET in C++, Java, and other languages.

 Storage: Binary Large Objects (BLOBs) provide queues for communication between
Windows Azure application components and provide a table class with a simple query
language.

 Infrastructure services: possibility of easily deploying virtual machines with Windows
Server or Linux distributions.

 Fabric controller: Microsoft Azure runs on a large number of machines. The fabric
controller's job is to combine the machines in a single Microsoft Azure data center into a
harmonious whole. Microsoft Azure compute and storage services are deployed on top of
all this compute power.

 Content Delivery Network (CDN): Caching frequently accessed data close to your users
speeds access to that data.

 Connect: Organizations interact with cloud applications as if they were inside the
organization's own firewall.

 Identity and access management: The Active Directory solution enables centralized and
easy management of identity and access control. This solution is perfect for account
management and synchronization with local directories.

__ Deliverable 4.5

6

3.2.2. .Net in REVaMP, .Net Core – Web API

For this development a technological study was done. Inside .Net there are several
technologies that are able to provide these kind of solutions. That was the reason to extract
their way of working and compare and contrast the several features they provide. Hence, the
first thing I would advise is to fully understand the problem we are facing in order to know how
to solve it in the most efficient and correct way possible, using the tools we have at our disposal.
Our options are WCF or Web API from the perspective of the problem to solve.

To know that WCF (Windows Communication Foundation) is a framework for creating service-
oriented applications. It was originally conceived to create services based on SOAP and other
related bindings. However, regarding the Web API technology, it is a lightweight alternative to
WCF to build REST services that can be consumed by different clients. As a first approach,
Web API should be the option for this project.

Some of the main characteristics of both technologies are compared below:

Table 1.- WCF and Web API comparison

WCF Web API

Designed to build:
 SOAP services that return data in

XML
 Secure, reliable and transactional

services that could support
messaging and be accessible
through a variety of transports

It was intended to build:

 REST services over HTTP
 Services oriented to resources

through HTTP, being able to take
advantage of the complete
characteristics of the protocol such
as:

 Version control
 Cache control in browsers
 Concurrency control through Etags

Duplex communication is feasible It is light and adapts well to devices that have
limited bandwidth such as smartphones,
tablets...

It is more versatile than Web API, since it can
use more protocols: TCP, HTTP, HTTPS,
Named Pipes, MSMQ...

It allows exposing services in a wide range of
clients: web browsers, tablets, mobiles...

It has a wide setup and therefore a higher
learning curve

Easier and simpler to use than WCF

__ Deliverable 4.5

7

After taking into account the characteristics of each of them, as well as the final objective of
the development, the selection of Web API has been made. This is because special scenarios
such as one-way messaging, message queuing and duplex communication will not be used.
Likewise, fast transport channels such as TCP, Named Pipes and UDP are not needed.
However, the creation of Services oriented to resources through HTTP (URIs,
request/response headers, browser cache control, version control, concurrency using ETags,
different content formats) is rewarded, in addition to allowing them to be cosumed by a wide
range of customers.

3.2.3. Swagger as Documentation

Trying to be at the forefront of the generation of API Rest systems, Swagger is selected as
documentation of the API itself. Swagger is used today as a de facto standard to achieve this
goal.

A Swagger document is the REST API equivalent of a WSDL document for a SOAP-based
web service.

The Swagger document specifies the list of resources available in the REST API and the
operations that can be called on these resources. The Swagger document also specifies the
list of parameters for an operation, which includes the name and type of the parameters,
whether the parameters are required or optional, and information about the acceptable values
for these parameters. In addition, the Swagger document can include additional JSON schema
that describes the structure of the request body that is sent to an operation in a REST API,
and the JSON schema describes the structure of response bodies returned from an operation.

Swagger documents must be in JSON format with a .json file extension or in YAML format with
a .yaml or .yml file extension.

A range of third-party tools are available that you can use with Swagger documents. We
specifically want to highlight the Swagger User Interface. It has been included in the
development because it allows to view and test a REST API defined with Swagger from any
web browser. Built-in test functions allow to specify the inputs of an operation defined in that
REST API, call that operation from the web browser, and inspect the results of calling that
operation.

__ Deliverable 4.5

8

Figure 1.- Swagger UI example

3.3. Where

The adopted solution is deployable in several ways. The best feature is that the development
is the same and we do not need to change anything in the source code.

 Local Solutions:

1. Launching al service in a development IIS that Microsoft Visual Studio is able to

create. Here you can see the local debug server created for this project. Moreover,
please take into account that the communication is able using HTTP and HTTPs.

Figure 2.- Service up and running in a “Development IIS” that works as a Console Program with Network
Connection.

__ Deliverable 4.5

9

2. Deploying the service in a real IIS located in a local PC or an imtranet PC. In this
case the way of working is the same, but using the real Web Server where the
application is deployed.

Figure 3.- Local IIS installed in the PC.

3. Generalization of storage creating several containers (DB and Service Containers)

with Docker. This new way of deploying the solution is easy for scalability, remote
deployment, givin the possibilities to be managed through Kubernetes (high
scalability solution).

__ Deliverable 4.5

10

Figure 4.- Docker with .Net Core preinstalled and with Internet Connection.

 Remote Solutions:

For our remote deployments we can manage the same solutions. First of all, a
IIS Web server can be deployed wherever you want. If this server is able to be
consumed from any place, the service will be accessible as a service. More
over, the service can be deployed directly in Azure, as well as in a IIS server in
Azure. Finally, Docker containers can also be deployed in Azure, giving access
to the service.

3.4. Why

The selection of this type of solution has been simple. As can be seen in Figure 5, cloud
computing is one of the basic technologies to achieve what is known today as Industry 4.0. In
addition, our service brings together other features of the technologies since it has security
and the management of cognitive computing and AI. That is why everything remains within the
desired scope, providing an Industry 4.0 solution with the expected characteristics.

__ Deliverable 4.5

11

Figure 5.- Industry 4.0 Technolofical Pillars.

3.5. Design

3.5.1. Technologies Description

After the basic study of functional requirements that the system to be developed must have,
as included in the Grant Agreement, different design proposals have been studied, selecting
those listed below:

 API Restful.

The RESTful API is an interface that two computing systems use to securely exchange
information over the Internet. Most enterprise applications must communicate with other
internal or third-party applications to perform various tasks. For example, to generate a monthly
payroll, an internal accounting system must share data with the customer's banking system to
automate billing and communicate with an internal timesheet application. RESTful APIs
support this information exchange because they follow secure, reliable, and efficient software
communication standards.

The basic function of a RESTful API is the same as browsing the Internet. When it requires a
resource, the client contacts the server through the API. API developers explain how the client
should use the REST API in the server application API documentation.

__ Deliverable 4.5

12

The details of the REST API request and response vary a bit depending on how the API
developers have designed the API.

Figure 6.- Controllers for each resource, for RESTFul API.

 Richardson Maturity Model

The Richardson Maturity Model rates an API based on its adherence to the constraints of
the REST architecture. The tighter your implementation, the higher up the ladder it will be.
There are 4 levels: the first is 0, which designates the lowest level of implementation and
the last is 3, which is the most suitable and, therefore, is RESTful. Thus, level 0 uses the
HTTP protocol as a transport but not to indicate the state of the application. Level 1
distinguishes between different resources, but uses a single HTTP method. Level 2 makes
full use of HTTP verbs combined with resource nouns. Finally, level 3 uses HATEOAS
(Hypermedia As The Engine Of Application State) to manage the state of the application.
In the REVaMP case we have developed a Leve 3 API REST.

__ Deliverable 4.5

13

Figure 7.- Richardson Maturity Model diagram.

 HATEOAS

In the detailed development, this principle has been followed. Specifically, HATEOAS
(Hypermedia as the Engine of Application State) is a constraint of the REST application
architecture. HATEOAS keeps the REST style architecture unique from most other network
application architectures.

The term “hypermedia” refers to any content that contains links to other forms of media such
as images, movies and text.

REST architectural style lets us use the hypermedia links in the API response contents. It
allows the client to dynamically navigate to the appropriate resources by traversing the
hypermedia links.

Navigating hypermedia links is conceptually the same as browsing through web pages by
clicking the relevant hyperlinks to achieve a final goal.

__ Deliverable 4.5

14

Figure 8.- Example of method that includes, pagination, HATEOAS (generation of URLs), HTTP methods and
resource access.

 Protecting the service with HTTPS

HTTPS (HyperText Transfer Protocol Secure) is an Internet communication protocol that
protects the integrity and confidentiality of user data between their computers and the website.
Thus, we have selected to complete the HTTP protocol in our service.

Sending data using the HTTPS protocol is protected by the Transport Layer Security (TLS)
protocol, which provides these three main layers of security:

 Encryption: The data exchanged is encrypted to keep it safe from prying eyes. That
means that when a user is browsing a website, no one can "eavesdrop" on their
conversations, track their activities across different pages, or steal information from
them.

 Data Integrity: Data cannot be changed or corrupted during transfers, intentionally or
otherwise, without detection.

 Authentication: Prove that your users are communicating with the intended website. It
provides protection against man-in-the-middle attacks and builds user trust, ultimately
creating other business benefits.

__ Deliverable 4.5

15

 CORS

Cross-origin resource sharing, or CORS, is a mechanism that allows restricted resources to
be requested. CORS defines a way in which the browser and server can interact to determine
if it is safe to allow a cross-origin request. This allows more freedom and functionality than
same-origin requests, but is additionally safer than simply allowing all cross-origin requests.
Clean Architecture

 Onion Architecture

The Onion Architecture is an Architectural Pattern that enables maintainable and evolutionary
enterprise systems. It is intended for use at a Solution/System level.

The primary proposition of this architecture is good coupling. Accurately, it is the level of
dependency of one thing upon another. The higher the coupling, the lower the ability to change
and evolve the system. Dependencies should be inward and never outward. Code should
depend only on the same layer or layers more central to itself. Moreover, Business Logic
behaviour is declared as contracts with the use of interfaces in a Object-Oriented context.
Finally, each layer bounds together concepts that will have a similar rate of change.

Figure 9.- Onion Architecture.

__ Deliverable 4.5

16

Figure 10.- Our service implementing Onion Architecture.

 Dependency Injection

Dependency inversion is a principle that describes a set of techniques intended to decrease
the coupling between the components of an application. It is one of the most popular and used
SOLID principles in the creation of applications, frameworks and components due to the
advantages it brings to them. Therefore, we have decided to incorporate it into the solution
created in the REVaMP project.

Very briefly, the Dependency Inversion Principle proposes to avoid rigid dependencies
between components through the following techniques:

 Use abstractions (interfaces) instead of direct references between classes, which
makes it easy for us to replace components.

 Make a class receive references to the components it needs to function, instead of
allowing it to instantiate them directly or through factories.

A dependency injection system is in charge of instantiating the classes that we need and
supplying ("injecting") the dependencies by sending the appropriate parameters to the
constructor.

__ Deliverable 4.5

17

Figure 11.- Consturctor receiving the injection of the services.

__ Deliverable 4.5

18

Figure 12.- Startup method that register all services for being injected.

__ Deliverable 4.5

19

 Repository Pattern and Unity of Work

A typical software application will need to access some kind of data store to perform CRUD
(Create, Read, Update, Delete) operations on the data, typically this could be some kind of
database, file system or any type of storage mechanism used to persist information.

In some cases saving or creating data may require persistence on new files or creating a new
row in a database table, in other cases saving new data may require multiple interactions with
various web-based services or applications and other services that are not generally managed
by ourselves.

For both cases we can make use of the Repository Pattern and a Unit of Work.

The Repository Pattern consists of separating the logic that retrieves the data and assigns it
to an entity model from the business logic that acts on the model.This allows the business logic
to be independent of the type of data that the source layer understands. In short, a repository
mediates between the domain and data mapping layers, acting as a collection of domain
objects in memory.

The Unit of Work is to centralize connections to the database by keeping track of everything
that happens during a transaction when using data layers and will rollback the transaction if
Commit() has not been called or there are logical inconsistencies.

Both patterns have been followed for the development of the REVaMP service.

__ Deliverable 4.5

20

Figure 13.- Infrastructure project with all repositories generated for this solution.

__ Deliverable 4.5

21

Figure 14.- Base repository created for the project.

__ Deliverable 4.5

22

Figure 15.- Predictor repository example.

Next image shows the Unit of Work of the project where all repositories are included. Moreover,
then they are accessible thank to the employment of typical C# Properties.

__ Deliverable 4.5

23

Figure 16.- Unit of work of the project.

__ Deliverable 4.5

24

 Token Based Authentictaion with JWT and Refresh Token

JSON Web Token (abbreviated JWT) is an open standard based on JSON for the creation of
access tokens that allow the propagation of identity and privileges or claims. The token is
signed by the server's key, so the client and server are both able to verify that the token is
legitimate. JSON Web Tokens are designed to be compact, to be able to be sent in URLs -
URL-safe- and to be used in Single Sign-On (SSO) scenarios. The privileges of the JSON Web
Tokens can be used to propagate the identity of users as part of the authentication process
between an identity provider and a service provider, or any other type of privileges required by
business processes.

Authorization is achieved when the user successfully enters their credentials, then a JSON
Web Token is generated and returned to the client, who has to save it locally, instead of the
traditional model of creating a session on the server and returning a cookie.

Whenever the user wants to access a protected route or resource, the client has to send the
JWT, usually in the Authorization header using the Bearer scheme.

This is a stateless authentication mechanism since the user's session is never saved in the
identity provider or in the service provider. Protected resources will always check for a valid
JWT on every access request. If the token is present and valid, the service provider grants
access to the protected resources. Since JWTs contain all the necessary information in
themselves, the need to query the database or other sources of information multiple times is
reduced.

Also, since tokens have a lifetime, the referesh token option has been implemented.
Specifically, with the refresh token, the step of re-authenticating can be skipped and with a
request to the API, we can obtain a new access token that allows the user to continue
accessing the application's resources.

__ Deliverable 4.5

25

Figure 17.- Login with token and refresh token for the user.

 Pagination

Some of the information returned from the service could be large. Thus, this feature has been
implemented both in the response and in the meta-information data. Figure 18 illustrates an
example of how it is done in REVaMP service.

Figure 18.- Example of pagination creation and creating URLs for HATEOAS and Meta-information .

__ Deliverable 4.5

26

3.5.2. Diagrams

3.5.2.1. Components Diagram

This system is composed by 4 different components that work together.

Figure 19.- General REVaMP service Components Diagram.

3.5.2.2. Package Diagrams

This project is complex and therefore a good distribution and organization of the code is
necessary. Here is shown the package organization of it.

__ Deliverable 4.5

27

Figure 20.- API Package Diagram.

__ Deliverable 4.5

28

 Figure 21.- CORE Package Diagram

__ Deliverable 4.5

29

Figure 22.- INFRASTRUCTURE Package Diagram.

Figure 23.- BUSINESS Package Diagram.

3.5.2.3. Class Diagram by Component

Simplified class diagrams are shown below (does not include interfaces and other software
artifacts) divided by components: Api, Core, Infrastructure and Business.

__ Deliverable 4.5

30

Figure 24.- API Class Diagram Overview.

__ Deliverable 4.5

31

Figure 25.- CORE Class Diagram.

__ Deliverable 4.5

32

Figure 26.- INFRASTRUCTURE Class Diagram.

__ Deliverable 4.5

33

Figure 27.- Business Class Diagram.

3.6. Storage

The service has two different storage systems that will be briefly described below.

3.6.1. Data Base

 For the proper functioning of the service, the storage of different information is
managed in its own database. Specifically, within this repository it will be registered:

o All configurations of each of the models, predictors and optimizers.
o All the history of tasks that have been generated.
o Obtained results.
o Versions of models, perdictors and optimizers, as well as their associated

information.

__ Deliverable 4.5

34

The following figure shows the Entity-Relationship diagram obtained as a result of the design
process for this service.

Figure 28.- Service Data Base.

3.6.2. File System

Our REVaMP service needs to keep a storage of each of the elements and their versions
(called Service Elements). That is the reason why a file storage has been defined. Specifically,
this storage divides the elements into different folders. Internally, each of them will have
grouped all developments of the Service Element with the same name and, subsequently, its
versions. They are all managed in the same way, thus, the storage structure will be the same.
However, the last level will be dependent on each of them and their specific operation.

The following figure shows an overview of how this store could be generated for multiple
elements.

__ Deliverable 4.5

35

Figure 29.- Diagram simulating the storage for models into the server.

3.7. Server Entities Management

For models, optimizers and advisors a polymorphic operation is performed. Specifically, from
a programmatic point of view, they are all managed in the same way. However, given the
design with the class hierarchy and the factory pattern for creating them, each one applies its
specific behavior.

Nevertheless, all of them are managed through compressed files that have their information
inside. These files are the ones that are loaded into the service, validated, extracted and
configured for all storage (displayed in section 3.6.2).

In the following sections we are going to show an example of each kind of models.

3.7.1. General

Every compressed file has a common part that carries its configuration. Specifically, it includes
the type of element, the variables and its additional configuration.

__ Deliverable 4.5

36

{
 "type": "OPTIMISER",
 "name": "Chemical Composition Optimiser Model",
 "description": "Optimiser model to determine if the chemical composition (MG and Cu) is ok.",
 "version": "1.0.0",
 "predictionOutputs": [
 {
 "parameter": "Evaluated_Chemical_Composition",
 "parameterType": "String",
 "parameterUnit": "Label"
 }
],
 "predictionVariables": [
 {
 "parameter": "MG",
 "parameterType": "Double",
 "parameterUnit": "Percentage"
 },
 {
 "parameter": "MGMAX",
 "parameterType": "Double",
 "parameterUnit": "Percentage"
 },
 {
 "parameter": "MGMIN",
 "parameterType": "Double",
 "parameterUnit": "Percentage"
 },
 {
 "parameter": "CU",
 "parameterType": "Double",
 "parameterUnit": "Percentage"
 },
 {
 "parameter": "CUMAX",
 "parameterType": "Double",
 "parameterUnit": "Percentage"
 },
 {
 "parameter": "CUMIN",
 "parameterType": "Double",
 "parameterUnit": "Percentage"
 }
],
}

Figure 30.- Service Element configuration file

As we have mentioned, each of the elements have different files or information:

 Rules and Advisors: Both are based on Rule Based Expert System. In this way, both
have same files.

o Working Memory. An auxiliary temporary memory that stores the process
data, the initial data of the problem and the intermediate results obtained
throughout the consultation and resolution process. Through it we can know not
only the current state of the system, but also how it was reached. Here, the
service enters the information it has about the current problem and the system
matches this information with the available knowledge to deduce new facts.

__ Deliverable 4.5

37

<?xml version=\"1.0\" encoding=\"UTF-8\"?>
<foundry>
 <input>
 <!-- Related to Metallurgical Quaility -->
 <MG value= \"\"/>
 <MGMAX value= \"\"/>
 <MGMIN value= \"\"/>
 <CU value= \"\"/>
 <CUMAX value= \"\"/>
 <CUMIN value= \"\"/>
 </input>
 <deduced>
 <!-- Related to Metallurgical Quality -->
 <MGMAX_ADJ value= \"-1\"/>
 <MGMIN_ADJ value= \"-1\"/>
 <CUMAX_ADJ value= \"-1\"/>
 <CUMIN_ADJ value= \"-1\"/>
 <CU_RESULT value= \" \"/>
 <MG_RESULT value= \" \"/>
 </deduced>
 <results>
 <Final_Result value=\" \"/>
 </results>
</foundry>

Figure 31.- Working Memory definition example for chemical composition.

o Rules and facts.

<?xml version=\"1.0\" encoding=\"utf-8\" ?>
<RuleEngine>
 <Rules>
 <!-- Begin utility rules -->
 <Rule id=\"AdjustMgMax\" desc=\"Utility rule to calculate the new Mg Max value\">
 <Condition><![CDATA[FACT(mgMaxAdj) == FACT(EmptyNum)]]></Condition>
 <Actions>
 <Action factId=\"mgMaxAdj\">
 <Expression><![CDATA[FACT(mgMax) + FACT(factorMgLimSup)]]></Expression>
 </Action>
 </Actions>
 </Rule>
 <Rule id=\"AdjustCuMax\" desc=\"Utility rule to calculate the new Cu Max value\">
 <Condition><![CDATA[FACT(cuMaxAdj) == FACT(EmptyNum)]]></Condition>
 <Actions>
 <Action factId=\"cuMaxAdj\">
 <Expression><![CDATA[FACT(cuMax) + FACT(factorCuLimSup)]]></Expression>
 </Action>
 </Actions>
 </Rule>
 <Rule id=\"CuOkCalculation\" desc=\"Cu bigger equal than CuMinAdj and less equal than
CuMaxAdj\">
 <Condition><![CDATA[FACT(cuDeduced) == FACT(Empty) AND FACT(cu) >= FACT(cuMinAdj)
AND FACT(cu) <= FACT(cuMaxAdj)]]></Condition>
 <Actions>
 <Action factId=\"cuDeduced\">
 <Expression><![CDATA[FACT(okCu)]]></Expression>
 </Action>
 </Actions>
 </Rule>
 ..
 <!-- End utility rules -->

 <!-- Begin calculation rules -->
 <Rule id=\"resultOK\" desc=\"Everything is OK in the Chemical Composition\">
 <Condition><![CDATA[FACT(ResultValue) == FACT(Empty) AND FACT(cuDeduced) ==
FACT(okCu) AND FACT(mgDeduced) == FACT(okMG)]]></Condition>
 <Actions>
 <Action factId=\"ResultValue\">

__ Deliverable 4.5

38

 <Expression><![CDATA[FACT(ok)]]></Expression>
 </Action>
 </Actions>
 </Rule>
 <Rule id=\"resultErrorCU\" desc=\"CU evaluation was wrong in the Chemical
Composition\">
 <Condition><![CDATA[FACT(ResultValue) == FACT(Empty) AND FACT(cuDeduced) ==
FACT(errCu) AND FACT(mgDeduced) == FACT(okMG)]]></Condition>
 <Actions>
 <Action factId=\"ResultValue\">
 <Expression><![CDATA[FACT(errCu)]]></Expression>
 </Action>
 </Actions>
 </Rule>
 …
 <Rule id=\"resultErrorCUMgAlto\" desc=\"CU evaluation was wrong and Mg was high in the
Chemical Composition\">
 <Condition><![CDATA[FACT(ResultValue) == FACT(Empty) AND FACT(cuDeduced) ==
FACT(errCu) AND FACT(mgDeduced) == FACT(mgAlto)]]></Condition>
 <Actions>
 <Action factId=\"ResultValue\">
 <Expression><![CDATA[FACT(errorCuMgAlto)]]></Expression>
 </Action>
 </Actions>
 </Rule>
 <!-- End calculation rules -->

 </Rules>
 <Facts>
 <!-- Begin Generic facts -->
 <Fact id=\"Empty\" desc=\"Transaction type\" type=\"string\">
 <xpath><![CDATA[' ']]></xpath>
 </Fact>
 <Fact id=\"EmptyNum\" desc=\"Transaction type\" type=\"double\">
 <xpath><![CDATA[-1]]></xpath>
 </Fact>
 <Fact id=\"okCu\" desc=\"Transaction type\" type=\"string\">
 <xpath><![CDATA['OK_CU']]></xpath>
 </Fact>
 <Fact id=\"errCu\" desc=\"Transaction type\" type=\"string\">
 <xpath><![CDATA['ERR_CU']]></xpath>
 </Fact>
 <Fact id=\"okMG\" desc=\"Transaction type\" type=\"string\">
 <xpath><![CDATA['OK_MG']]></xpath>
 </Fact>
 …
 <!-- End Generic facts -->

 <!-- Begin Results facts -->
 <Fact id=\"ResultValue\" desc=\"Final result value\" type=\"string\">
 <xpath><![CDATA[foundry/results/Final_Result/@value]]></xpath>
 </Fact>
 <!-- End Results facts -->

 <!-- Begin Input facts -->
 <Fact id=\"mg\" desc=\"Mg perecentage\" type=\"double\">
 <xpath><![CDATA[foundry/input/MG/@value]]></xpath>
 </Fact>
 <Fact id=\"mgMax\" desc=\"Mg maximum precentaje allowed\" type=\"double\">
 <xpath><![CDATA[foundry/input/MGMAX/@value]]></xpath>
 </Fact>
 <Fact id=\"mgMin\" desc=\"Mg minimum precentaje allowed\" type=\"double\">
 <xpath><![CDATA[foundry/input/MGMIN/@value]]></xpath>
 </Fact>
 …
 <!-- End Input facts -->

 <!-- Begin Deduced facts -->

 <Fact id=\"mgMaxAdj\" desc=\"Mg maximum precentaje adjusted using the input factor\"
type=\"double\">

__ Deliverable 4.5

39

 <xpath><![CDATA[foundry/deduced/MGMAX_ADJ/@value]]></xpath>
 </Fact>
 <Fact id=\"mgMinAdj\" desc=\"Mg minimum precentaje adjusted using the input factor\"
type=\"double\">
 <xpath><![CDATA[foundry/deduced/MGMIN_ADJ/@value]]></xpath>
 </Fact>
 …
 <!-- End Deduced facts -->

 </Facts>
</RuleEngine>

Figure 32.- Rules and facts overview (reduced) for manageing chemical composition validation.

 Formula: In this model we have a file storaging the formula. The formula is in text

format but, later, the service interprets it and calculates the values.

{
 "operation":
 {
 "applyFormula": true,
 "expression": "FLOOR(0.1135 * DURATION_MINS - 11.7734 * MIN_ROTATING_SPEED - 16.4631 *
MAX_ROTATING_SPEED + 10.6025 * AVG_ROTATING_SPEED + 0.0391 * PRCT_CLOSED_DOOR + 0.1987 *
PRCT_BURNER_ON - 0.1600 * PRCT_ROTATION_RUNNING + 0.0829 * PRCT_VERTICAL_POSITION + 24.2863)"
 }
}

Figure 33.- File definition for formula, example of Gas Consumption.

 Statístical models: In both cases, classification and regresions, a binary file with the

created moldes is included. Later, service will load the binary model. In this case, we
can manage Weka and ML.Net models. As these models are im binary formats and
are not readeable, we do not include an example.

 Optimiser configuration: This setting allows you to define how all optimization will
work. All information is included in a file inside the generated package. The different
elements that can be configured are the following:

o Genes. Each of the genes can be configured one by one. They can be assigned
with its maximum/minimum possible values, the mutation ratio that it will have
and whether that gene will be able to be modified by the algorithm.

o Algorithm. The execution will be modified according to the configuration. The
algorithm can work based on the number of iterations or looking for a value
higher than the fitness base value defined as limit for a solution. Both of them
can also be combined and/or use a maximum value of iterations to ensure that
the algorithm finishes. Likewise, the configuration allows us to activate elitism
(in other words, keep the best of all solutions between generations) and the
crossover factor to be used. Finally, you can also indicate the number of
simultaneous solutions to be evaluated simultaneously by the algorithm.

__ Deliverable 4.5

40

{
 "UseGenerationNumber": true,
 "MaximunNumberOfGenerations": 3000,
 "UseEvaluationLimit": true,
 "EvaluationLimit": 0.9996,
 "UseElitism": true,
 "CrossoverRatio": 0.8,
 "Population": 40,
 "Genome": {
 "Genes": [
 {
 "Typology": " CONTINUOS ",
 "Name": "DURATION_MINS",
 "MutationRatio": 0.10,
 "CanBeModified": true,
 "MinValue": 5.0,
 "MaxValue": 30.0,
 "Labels": null
 },
 {
 "Typology": "CONTINUOS",
 "Name": "MIN_ROTATING_SPEED",
 "MutationRatio": 0.05,
 "CanBeModified": true,
 "MinValue": 5.00,
 "MaxValue": 10.00,
 "Labels": null
 },
 {
 "Typology": " CONTINUOS ",
 "Name": "MAX_ROTATING_SPEED",
 "MutationRatio": 0.05,
 "CanBeModified": false,
 "MinValue": 5.0,
 "MaxValue": 10.0,
 "Labels": null
]
 },{
 "Typology": "CONTINUOS",
 "Name": "AVG_ROTATING_SPEED",
 "MutationRatio": 0.05,
 "CanBeModified": false,
 "MinValue": 5.00,
 "MaxValue": 10.00,
 "Labels": null
 },
 …
]
 }
}

Figure 34.- Configuration overview (reduced) for improve gas consumption - Example.

3.7.2. Third Party Integration

The developed service tries to serve both the interests of the REFIAL use case and those of
the rest of the project members (steel and lead use cases). That is why it is intended to provide
the models developed by third parties through the same way of interaction. For this purpose,
it is necessary to integrate models and generate the philosophy and basic development that
allows it to be done. Taking into account the current third party developments, this service has
been adapted in the following way:

__ Deliverable 4.5

41

3.7.2.1. External DLLs

Within the models generated by the partners of the REVaMP project we have the use case of
steel (BFI). Specifically, the developed model has been generated as a DLL programmed in
C++ that performs its tasks. In this way, to carry out the integration and be able to use it, the
following starting information is needed (final definition pending that will be done during WP5):

 JSON about input/output variables. This will be included as the Service Element
configuration data.

 Entry point to call the DLL. This entry point will be included in a JSON with the
configuration of the model. This JSON is similar to the aforementioned JSON in the
optimization process.

To be able to call this function, our service makes use of an advanced approach that allows us
to load external developments. Thus, this kind of models will use Reflection in its specific way
of working.

The specific code that is included in the models is the following one. First of all we need a
mechanism that allows us to call the DLL. This is provided by kernel32.dll with LoadLibrary
function. This source code prepare the call in C#.

 [DllImport("kernel32.dll", EntryPoint = "LoadLibrary")]
 static extern int LoadLibrary(
 [MarshalAs(UnmanagedType.LPStr)] string lpLibFileName);

 [DllImport("kernel32.dll", EntryPoint = "GetProcAddress")]
 static extern IntPtr GetProcAddress(int hModule,
 [MarshalAs(UnmanagedType.LPStr)] string lpProcName);

 [DllImport("kernel32.dll", EntryPoint = "FreeLibrary")]
 static extern bool FreeLibrary(int hModule);

Figure 35.- Source Code to use kernell32.dll to load dynamically external DLLs.

The LoadLibrary function loads an unmanaged file, the GetProcAddress function gets the
function pointer of an unmanaged file and the FreeLibrary function frees the unmanaged file.
Now I can get the function pointer in a.dll very easily:

int hModule = LoadLibrary($"{Path.Combine(repositoryPath, thirdPartyPath,
version, dllPath)}");
if (hModule == 0) return false;
IntPtr intPtr = GetProcAddress(hModule, entryPointFunction);

Figure 36.- Getting the function pointer for C++ dll.

And when we want to free the dll file:

FreeLibrary(hModule);

Figure 37.- Free loaded DLL.

__ Deliverable 4.5

42

For making the communication we need to define a delegate to translate the call to a function
pointer.

public static Delegate GetDelegateForFunctionPointer (
 IntPtr ptr,
 Type t
)

delegate object ExternalFunction(object b);

ExternalFunction function =
(ExternalFunction)Marshal.GetDelegateForFunctionPointer(intPtr,
typeof(ExternalFunction));

Figure 38.- Source code to translate the Pointer to a Delegate Function in C#.

Finally, when all this work is done, we can call the function.

var results = function(new double[3.0, 4.8, 6.8, 3.3]);

Figure 39.- Calling the external function in C++ dll.

Please, note that here we have defined the parameter and return data as object, but can be
specifically defined for each model.

3.7.2.2. External Services in Python

Regarding other third party models, such us aluminum use case (EURECAT), specifically, the
developed model has been generated as a Python software (the calculation part). In this way,
to carry out the integration and be able to use it, the following starting information is needed
(final definition pending that will be done during WP6):

 JSON about input/output variables. This will be included as the Service Element
configuration data.

 Entry point to call the Python function. This entry point will be included in a JSON with
the configuration of the model. This JSON is similar to the aforementioned JSON in the
optimization process. Here we will have the entry point call.

In this case, we are going to launch the external model as a process. So, we can launch the
function, pass the needed parameters and get the results to be processed. This is the following
source code:

__ Deliverable 4.5

43

ProcessStartInfo start = new ProcessStartInfo();
start.FileName = $"{Path.Combine(repositoryPath, thirdPartyPath, version,
pythonPath)}"
start.Arguments = string.Format("{0} {1}", var1, var2);
start.UseShellExecute = false
start.CreateNoWindow = true
start.RedirectStandardOutput = true
start.RedirectStandardError = true;
using (Process process = Process.Start(start))
{
 using (StreamReader reader = process.StandardOutput)
 {
 string stderr = process.StandardError.ReadToEnd();
 string result = reader.ReadToEnd();
 return result;
 }
}

Figure 40.- Launching Python module from C#.

This code can be adapted to launch an internal function of a Python module. In order to achieve
this goal, the arguments must be changed to load modules.

In the REVaMP Aluminium use case we have the following models and the way of launching
are listed below:

 Model Main Change Mix Model:
o Entry Point: __main_optimization__.py
o Input Variables: optimization_step == 'principalOptimization’ and Weight (kg)-

integer for each alloy, Security coef (min)-float, Security coef (max)-float of the
chemical composition.

o Output Variables: 3 CSV file to be transformed, one with the weight in spoonfuls
of the materials, another with the weight in kg and another with the composition.

 Alloy Adjusting Model:
o Entry Point: __main_optimization__.py
o Input Variables: variable optimization_step == ' secondary_optimization’ and

alloy number (str), Security coef (min)-float, Security coef (max)-float of the
chemical compostion, Waste(kg) (float), csv file with the composition of the
furnace (path), Cost reheat (float) , Mg fading cost (float), Temperature (float),
Time (list offloat values, max 6)

o Output Variables: 3 CSV file to be transformed, one with the weight in spoonfuls
of the materials, another with the weight in kg and another with the composition.

 Process Control Model:
o Entry Point: __main_anomaly__.py
o Input Variables: batch name (str)
o Output Variables: 4 str with subprocess info.

 Mass Balance:
o Entry Point: __main_composition.py
o Input Variables: kg (int) for each raw material
o Output Variables: Final chemical composition (str)

__ Deliverable 4.5

44

The developed service does not handle csv files or tables as results. Thus, we have created a
mapping class that serialize all this information into a JSON format. This format is the standard
de facto used in our communications and also to be stored in our database in our prediction,
optimization and advisoring tasks.

3.7.2.3. Docker Integration

Like a possible further approach and without having developed it, the development team has
concluded that the best integration option is the use of Docker containers. In this case, each
of the developers (each use case or manufacturing process) could generate their image
containing everything necessary for the specific model execution and would give us the
configuration to launch it. Thus, there is no need to think about dependencies. Something that
simplifies the growth of the system. As future work, the growth of the models should go this
way.

4. REVaMP DEMO

On one hand, we must remember that the result of this deliverable is a processing service
(creating software as a service), which does not have any type of graphical user interface.
However, the documentation is included with Swagger, as already mentioned, and it can be
launched from it, as we illustrate in the following demo.

On the other hand, the deliverable is a software and through the document an exhaustive
explanation of how it has been developed has been made. In addition, the following
explanations and images illustrate a demo of how a user can make a prediction and receive
the results. One of the benefits of developed service is that all execution processes are
launched in the same way. The only difference is in the values to pass to the models and the
controller to call.

Firstly, to use the service it is needed to make the authentication and authorization. In order to
achieve it, the user must call a method with the user and password to get the token (JWT
token). Following image shows how to call the method. Each user has his own authorizations.

__ Deliverable 4.5

45

Figure 41.- Calling the Token Controler POST method to login the user.

Secondly, if the user and password are right, our service will provide both, the authorization
token and the refresh token to renew the authorization. This image shows the call done to get
that information and the results with the tokens.

Figure 42.- Getting the Authoriztaion Token and the Refresh Token.

Thirdly, if the user wants to call other methods, he must add the token to the communication
headers. Here, with swagger, there is a button to add it. Next figure show how to do it.

__ Deliverable 4.5

46

Figure 43.- Adding the authorization token to our calls.

Before launching the predictions we need to know which model we want to use. Hence, the
best option is to make a query to get the list of all available elements. In the following example,
we made that call and we recieve the list of all available predictors.

Figure 44.- Getting the list of all predictors to select the one that we want to use.

__ Deliverable 4.5

47

Once we already know which model we want to lunch, we have to prepare the PATCH call
with the ID of the model, the application name to register it and the JSON information to be
used in the model. Here, the following figure illustrates this task.

Figure 45.- Preparing the message to call the prediction process, in tihs case, gas consumption prediction.

Due to the way this service was developed, after we ask for a work, we will receive a HASH
value to extract the results. Moreover, the service also gives us the URL to the result to
navigate to it. This next figure shows how we receive the HASH information.

__ Deliverable 4.5

48

Figure 46.- Getting the HASH information and the URL when we ask about a prediction.

__ Deliverable 4.5

49

Then, when we visit the link or when we call the controller to get the information of this HASH
(see Figure 47), two situations can occur.

Figure 47.- Using the HASH value to get the results.

The first one is that the service is sill working and we do not have the result (see Fig. 48). And
the last one is when we already have all work done (see Fig. 49). After that, we already have
the result of our prediction to be used by the client.

__ Deliverable 4.5

50

Figure 48.- We have all information (for instance, inputs, model, dates) but it is still working.

Figure 49.- Prediction done, result and end date added.

