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  1. Sample information 

  2. Experimental setup — see N-11-152! 

  4. Model training 

  5. Feature extraction 

  6. Feature joining 

  8. Conclusions 

Neutron activation analysis (NAA) is a widely used technique for detecting trace elements 
in various materials. In recent years, machine learning (ML) algorithms have shown great 
potential for improving the accuracy and efficiency of NAA. In this work, to achieve optimal 
results, data augmentation and feature engineering techniques are applied to NAA datasets to 
improve the quality and quantity of data available for training ML models. We will investigate 
the effectiveness of various data augmentation and feature engineering techniques in improving 
the performance of ML models for NAA. 

We explore techniques such as feature selection and combination, temporal averaging, 
and evaluate their impact on the accuracy of NAA models. The results of this study will provide 
valuable insights into the optimal strategies for data augmentation and feature engineering in 
NAA, and could potentially lead to more accurate and efficient NAA systems in the future. 

The current setup is shown in Fig. 2, where the Large Sample Sensor (LSS) is configured to 

emulate industrial conditions at aluminum refinery. This configuration can detect gamma rays 

induced by neutrons in material constantly moving in a vertical pipe. Currently, five different 

detectors (3x LaBr:Ce, 1x LaBr:Sr, BGO) are installed in the setup (Fig. 3a, 3b). 

Fig. 2.  Photo of the LSS demonstrator placed in the ex-
perimental setup. 

Fig. 3.  Photo of one of the LaBr3 detec-
tors (a) and BGO (b) used in the experi-

ments.  

b) a) 

Element Al Cr Cu Fe Mg Mn 

Minimum [g] 2765 0 2 3 1 0 

Maximum [g] 10039 8 704 1065 68 31 

       

Element Ni Pb Si Ti Zn Total 

Minimum [g] 0 0 8 1 1 2800 

Maximum [g] 45 25 710 6 46 10716 

Tab. 1. Mass ranges present in the prepara-
tion of calibration samples. 

Fig. 1. Typical quality of the 
investigated samples 

  3. Data preprocessing 
The raw data is a series of 

accumulating histograms of 

counts in each channel collected 

every 60s during an hour long 

measurement. The spectra 

measured in succession are sub-

tracted from each other. After 

each minute the information 

about the dead time of the digi-

tizer to correct for the expected 

amplitude that was lost during 

dead time and because of short-

er or longer measurement time. 

The spectra have to be re-

binned to account for variability 

of electrical gain and other envi-

ronmental effects. The variabil-

ity of the sample mass should 

result in the change of peak am-

plitude and it cannot be dis-

turbed by effect of shifting peak 

positions. 

For training set and test set 

common calibration lines are se-

lected.  

55 samples were prepared made from finely ground metal chips. For each sample 
composition, spectra were measured for 60 seconds and repeated 60 times, resulting in a one-
hour measurement during which the sample was constantly rotating with a period of ~5 s to 
improve the average uniformity of the material distribution inside the measurement chamber. 
The sample was irradiated with an intense PuBe neutron source emitting ~2x106 n/s, and data 
acquisition was performed using a CAEN DT5730 Digitizer (8 Channels, 14 bits, 500 MS/s).  

> The dataset is split into test set (15 %) and training set 
(85 %). 

> Input layer depends on the number of channels that va-
ries for each element. 

> Two hidden layers with 30 neurons each. 

> The deep layers are activated using the hyperbolic tan-
gent (tanh) function and each layer incorporates L1L2 regu-
larization to mitigate overfitting concerns.  

> The output layer utilizes a sigmoid activation function to 
produce a continuous numerical output.   

Differential spectra Dead time correction 

Rebinning 

The counts from all of the detectors are added to improve 

the signal to noise ratio. This can be applied in two ways. If we 

assume that features from detector A and B can be written as a 

matrices: 

 

 

 

 

 

 

Where m is the number of instances (spectra), and n is 

the number of channels (or more generally features). We can 

join the data from these detectors in two manners, i.e. by ad-

ding corresponding elements: 

  

or concatenating the vectors horizontally: 

 

 

 

In this work we are using five detectors, described as D0, 

D1, D2, D3, D4 and five configurations have been tested: 

> D0 

> D3 

> D0 + D1+ D2 + D4 

> D0 + D1 + D2 + D3  + D4 

> (D0+D1+D2+D4, D3)  

C
o

rr
re

la
ti

o
n

 m
at

ri
x 

o
f 

ch
an

-

n
el

s 
+ 

m
as

s 
as

 e
xt

ra
 c

h
an

n
el

 

w
it

h
 e

ac
h

o
th

er
. 

C
o

rr
el

ati
o

n
 s

p
ec

tr
u

m
 o

f 

m
as

s 
w

it
h

 e
ac

h
 c

h
an

n
el

 f
o

r 

th
e 

w
h

o
le

 p
o

p
u

la
ti

o
n

. 

N
o

rm
al

iz
ed

 m
as

s 
(g

re
en

) 
an

d
  

o
f 

th
e 

m
o

st
 c

o
rr

el
at

ed
 c

h
an

-

n
el

. 

Li
n

ea
ri

ty
 c

h
ec

k 
o

f 
m

as
s 

vs
. 

th
e 

b
es

t 
co

rr
el

at
ed

 c
h

an
n

el
 

  7. Results 
 Error estimation based on RMSE (g) 

 
D0 D3 D0+D1+D2+D4 

D0+D1+D2+D3
+D4 

(D0+D1+D2+D4,  
D3) 

Al 347.48 237.93 466.54 497.89 508.14 

Cr 3.72 3.26 3.47 3.31 2.69 

Cu 35.39 83.15 45.61 66.72 42.05 

Fe 10.99 11.13 14.36 12.93 9.44 

Mg 15.79 18.22 13.55 14.97 18.20 

Mn 5.77 6.50 5.99 6.98 4.86 

Ni 6.74 11.80 1.18 1.37 1.08 

Pb 5.39 6.53 7.26 7.12 4.29 

Si 97.50 143.42 73.09 89.74 78.01 

Ti 2.07 2.42 2.23 2.13 2.32 

Zn 5.02 8.35 7.02 16.20 15.14 

RMSE sum 535.86 532.71 640.30 719.36 686.22 

> Real samples with known compositions are better training 
material for neural networks. The uniformity of finely 
chipped metals does not introduce problems with depen-
dance of metal components in sample 

> Careful preparation of training data is important since the 
performed averaging experiments suggest that counts from 
single channels can be taken as features for input of the 
neurlal networks 

> Positioning of the detectors makes them sensitive for diffe-
rent components, unshielded detectors behind the sample 
are better stuited for total mass prediction 

> Combination of data from multiple detectors makes the se-
tup more sensitive for trace amounts of elements. 

> Our results suggest that the limit of detectability in our se-
tup is below 20 g of uniformily distributed mass. 


